

Rainwater harvesting and greywater recovery - Part 3-

Prof. Patrice CANNAVO

AGROCAMPUS OUEST / Agreenium, France

Department of Physical Environment, Landscape Architecture Environmental Physics and Horticulture research Laboratory

Module 2: Resource use from a challenge perspective Urban Agriculture for resource efficiency and waste management

Course outline

P. Cannavo

1. Urban water hydrology

- 1.1 Specificities of the urban context
- 1.2 Impacts of the vegetation on water regulation
- 1.3 Soil properties (reminder)

2. Green roof potential for water runoff control

- 2.1 Roles and constitution
- 2.2 Performance

3. Greywater

- 3.1 Origin, collection, treatment
- 3.2 Greywater reuse for irrigation

4. Stormwater basin for road water runoff

- 4.1 Operation
- 4.2 Infiltration performance and clogging process

Course outline

1. Urban water hydrology

- 1.1 Specificities of the urban context
- 1.2 Impacts of the vegetation on water regulation
- 1.3 Soil properties (reminder)

2. Green roof potential for water runoff control2.1 Roles and constitution2.2 Performance

3. Greywater

- 3.1 Origin, collection, treatment
- 3.2 Greywater reuse for irrigation

4. Stormwater basin for road water runoff

4.1 Operation

4.2 Infiltration performance and clogging process

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

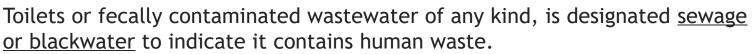
P. Cannavo

> 3.1 Origin, collection, treatment

toilet and kitchen to sewer

What is greywater ?

Greywater is all wastewater generated in <u>households</u> or <u>office buildings</u> from streams **without fecal contamination**, i.e. all streams except for the wastewater from toilets.


process lines from control box

overflow to sewe

Sources of greywater include : Sinks, Showers, Baths, Clothes washing machines, Dish washers.

Environment Canada

recycled water to house

garden and car washing

However, under certain conditions traces of feces, and therefore pathogens, might enter the greywater stream via effluent from the shower or washing machine.

P. Cannavo

AGRC

greywater from bathroom and laundry

www.pinterest.com/lelemia808/greywater-treatment/

> 3.1 Origin, collection, treatment

Recommendations & Benefits

Greywater contains fewer pathogens than domestic wastewater: ⇒ Generally safer to handle and easier to treat and reuse onsite for: toilet flushing, landscape or crop irrigation, other non-potable uses.

<u>However</u>, the use of non-toxic and low-sodium soap and personal care products is recommended to protect vegetation when reusing greywater for irrigation purposes

The application of greywater reuse in urban water systems provides <u>substantial benefits</u> for:

- the water supply subsystem by reducing the demand for fresh clean water
- the wastewater subsystems by reducing the amount of wastewater required to be conveyed and treated

> 3.1 Origin, collection, treatment

Greywater characteristics

Main vigilance parameters

BOD5 : Biochemical Oxygen Demande over 5 days. An excessive BOD5 can generate serious problems of color and smell;

COD : Chemical Oxygen Demand;

TSS : Total Suspension Solids. Organic pollutant and heavy metals can be absorbed by particles, being protected against desinfectants et creating smell problems;

Turbidity : an excessive turbidity (cloudy liquid) can generate smell and be detrimental to desinfection.

Threshold limits and greywater reuse posibilities are country policies dependent !

> 3.1 Origin, collection, treatment

Greywater characteristics

Greywater composition mainly depends on: Geographic origin, building category, occupants activity

Significant variation in time and space, depending on water consumption and rejected substances quantities

In a same place:

> Normal variations: use evolution depending on the occupation (eg: high activity in the morning and in the night for personal hygiene, variations between weeks and week end or holiday periods)

> Accidental variations: ponctual, relative to an exceptional event (eg: hair dye presence, household maintenance or do-it-yourself chemical products, chlorine desinfectant excess)

> 3.1 Origin, collection, treatment

Greywater characteristics

Eriksson et al., 2002

		Shower/bath	Bathroom	Shower/bath	Washbasin	Dath	Washbasin	Shower
		Silowei/bath	Ballilooni			Bath		
		Siegrist, Witt	Christova-	Surendran	Surendran	Almeida,	Almeida,	Almeida,
		and Boyle	Boal <i>et al.</i>	and	and	Butler and	Butler and	Butler and
		(1976)	(1996)	Wheatley	Wheatley	Friedler	Friedler	Friedler
r	-	· · · ·	(1000)	(1998)	(1998)	(1999)	(1999)	(1999)
Temperature	°C	29						
Color	Pt/Co		60-100					
Turbidity	NTU		60 - 240	92	102			\frown
Suspended matter	mg.L ⁻¹	120	48 - 120	76	40	54	181	(200)
pH			6,4 - 8,1	7,6	8,1			\smile
BOD5	mgO ₂ .L ⁻¹	170	76 - 200					
Total COD	mgO ₂ .L ⁻¹					210	298	501
Soluble COD	mgO ₂ .L ⁻¹					184	221	221
Total-N	mgN.L ⁻¹	17						
NTK	mg.L ⁻¹		4,6 - 20					
NH4-N	mgN.L ⁻¹	2	< 0,1 - 15	1,56	0,53	1,1	0,3	1,2
NO3-N Total-P	mgN.L ⁻¹	0,4		0,9	0,34	4,2	6	6,3
PO4-P	mgP.L ⁻¹	2	0,11 - 1,8		, i i i i i i i i i i i i i i i i i i i			
Total	mgP.L ⁻¹	1		1,63	45,5	5,3	13,3	19,2
Total coliforms				-		5,5	15,5	13,2
'	UFC.100mL ⁻¹	70 - 8200	500 - 2,4.10	6.10 ⁶	5.10 ⁴			
Faecal coliforms	UFC.100mL ⁻¹	1 - 2500	170 - 3,3.10 ³	600	32			
Faecal streptoccus	UFC.100mL ⁻¹	1 - 70000 🔪	79 - 2,4.10 ³					

=> High content heterogeneity depending on the bibliographic source and the greywater source

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

P. Cannavo

AGRO CAMPUS

> 3.1 Origin, collection, treatment

Treatment

Most greywater is easier to treat and recycle than blackwater (sewage), because of lower levels of contaminants.

If collected using a separate plumbing system from blackwater, domestic greywater can be recycled directly within the home, garden or company and used either immediately or processed and stored.

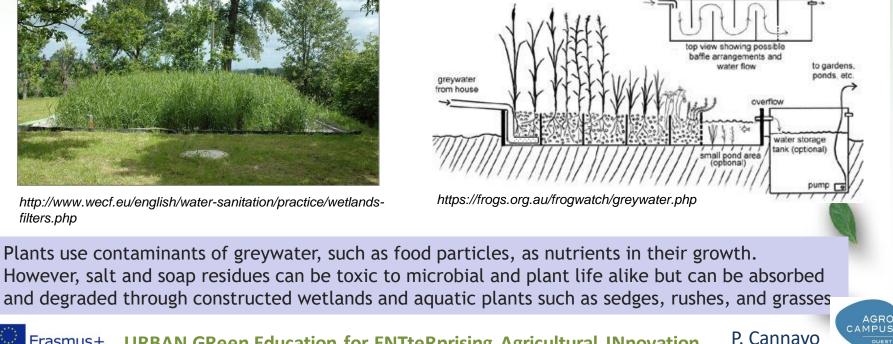
If stored, it must be used within a very short time or it will begin to putrefy due to the organic solids in the water.

Recycled greywater of this kind is never safe to drink, but a number of treatment steps can be used to provide water for washing or flushing toilets.

Example of a source of greywater in the household: dirty water from cleaning the floor (Wikipedia)

3. Greywater > 3.1 Origin, collection, treatment

Treatment


The treatment processes that can be used are in principle the same as those used for sewage treatment:

Biological systems are a variation of the activated sludge process and is also used to treat sewage:

=> constructed wetlands

http://www.wecf.eu/english/water-sanitation/practice/wetlandsfilters.php

> 3.1 Origin, collection, treatment

Treatment

The treatment processes that can be used are in principle the same as those used for sewage treatment:

Biological systems are a variation of the activated sludge process and is

also used to treat sewage: => <u>living walls</u>

http://www.privateislandsblog.com/ ey-water-treatment/ Erasmus+ URBAN GReen

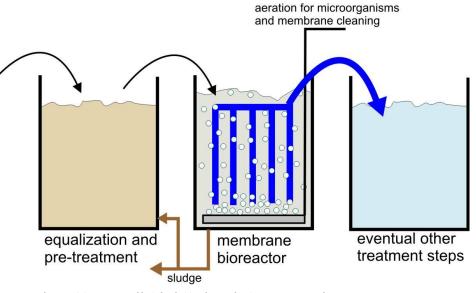
1. North, insulated curtain wall glazing provides daylighting
2. Skylights provide additional toplighting for the Green Wall
3. Greywater filter tanks remove large particulate matter before sending to Green Wall
4. Green Wall
4. Green Wall treats all greywater onsite through closedloop evapotransporation
5. Vacuum flush toilet
6. Composting units (2) treat all blackwater on-site
7. Potable water treatment system (wall mounted) including micron filters and UV light for disinfection
8. Radiant floor hybrid hot water heater
9. Moss mat green roof
10. 2x12 wood-framed, cellulose insulated walls

http://living-future.org/casestudy/bertschiscience

P. Cannavo

AMPUS

P. Cannavo


> 3.1 Origin, collection, treatment

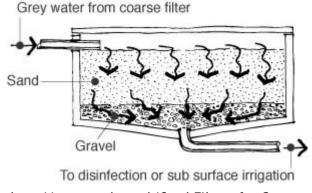
Treatment

The treatment processes that can be used are in principle the same as those used for sewage treatment:

Biological systems are a variation of the activated sludge process and is also used to treat sewage:

=> <u>bioreactors</u> or more compact systems such as membrane bioreactors

http://www.colloid.ch/index.php?name=membranes


> 3.1 Origin, collection, treatment

Treatment

The treatment processes that can be used are in principle the same as those used for sewage treatment:

Mechanical systems :

=> sand filtration / lava filter systems

http://www.reuk.co.uk/Sand-Filters-for-Greywater.htm

For greywater to be stored for more than a day it must be disinfected - typically with chlorine or iodine to kill any pathogens which remain in it

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

P. Cannavo

AGRC

P. Cannavo

> 3.1 Origin, collection, treatment

Regulations about treated greywater reuse

World Health Organisation: main recommendations made in 1989, revised in 2006. Recommendations related to treated greywater reuse for agriculture, based on health risks

USA and Australia published in 2004 and 2006 (resp.) national recommendations.

In Europe, there are no regulations.

=> Directive 91/271/EC - art.12: « greywater are reused when it is suitable »
=> Some european countries defined their own regulations, more or less restrictives

> 3.1 Origin, collection, treatment

Regulations: case of France

The National Health Agency (ANSES) estimates that greywater reuse is possible for strictly limited uses exclusively in areas submited to repeated water shortage.

If greywater treatment is operated and is appropriate, its reuse is posible for: - toilet flush supply

- green spaces irrigation
- outside surfaces cleaning without aerosol generation (no spray use)

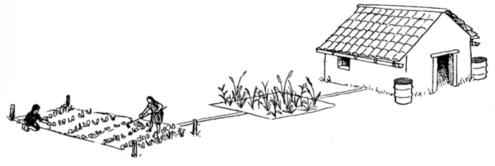
> 3.1 Origin, collection, treatment

Regulations: case of France for cropping systems

4 quality levels of greywater (A, B, C and D)

PARAMETER		SANITARY QUALITY LEVEL OF TREATED GREYWATER						
		В	С	D				
Suspended matter (mg/L) Chemical Oxygen Demand (mg/L) Escherichia coli (UFC/100 mL)		Consistent with treated blackwater rejection						
		Fecal enterococcus (log unit)	≥ 4	≥ 3	≥ 2	≥ 2		
F-ARN specific phages (log unit)		≥ 3	≥2	≥ 2				
Sulfate reduction anaerobic bacteria spores (log unit)	≥ 4	≥ 3	≥2	≥2				

2010, August 2nd Decree for treated graywater reuse for crop and urban green space area irrigation


USE		SANITARY QUALITY LEVEL OF TREATED GREYWATER				
	А	В	с	D		
Gardening, fruit and vegetable crops not transformed by an adequate industrial thermic treatment	+	-	-	-		
Gardening, fruit and vegetable crops transformed by an adequate industrial thermic treatment	e +	+	-	-		
Pasture	+	+ (3)	-	-		
Public urban green spaces	+ (5)	-	-	-		
Sold cutted flowers	+	+ (6)	-	-		
Nursery and bushes and other flower crops	+	+	+ (6)	-		
Fresh fodder	+	+ (3)	-	-		
Other cereal and feed crops	+	+	+ (6)	-		
Fruit arboriculture	+	+ (7)	+ (8)	-		
Short thicket rotation with controled public access	+	+	+ (6)	+ (6)		
Wood, short thicket rotation excluded, with controled public access	-	-	-	-		
+ : permited : prohibited						

+ : permited, - : prohibited

3.2 Greywater reuse for irrigation

Advantages / inconvenients of greywater reuse for irrigation

http://en.hesperian.org/hhg/A_Community_Guide_to_Environmental_Health:Waste water:_A_Problem_or_a_Resource%3F

Main advantages

- Preservation of the water ressource
- Supply in nutrients: organic matter, phosphorus, nitrogen, major ions...

Main inconvenients

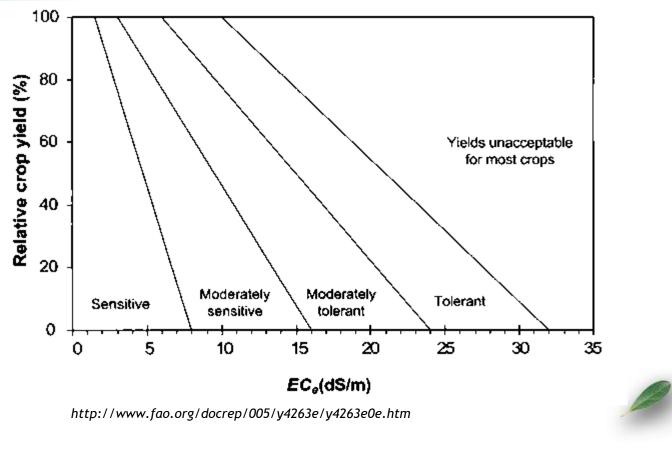
- High salts content : soil salinization risk and plant tolerance
- Accumulation of metals
- Presence of pathogens and antibiotics...

100 mm of greywater spread over 1 ha can provide :

- · 16 to 62 kg nitrogen,
- \cdot 2 to 69 kg potassium,
- · 4 to 24 kg phosphorus,
- \cdot 18 to 208 kg calcium,
- \cdot 9 to 100 kg magnésium,
- · 27 to 182 kg sodium. (Faby et Brissaud, 1997)

P. Cannavo

AGRO CAMPUS ouest


AGRO CAMPUS

P. Cannavo

> 3.2 Greywater reuse for irrigation

Plant tolerance to salinity

> 3.2 Greywater reuse for irrigation

Salt tolerance of crops

Woody crops (EC = electric conductivity (ie salinity), Rating: S = sensitive, MS = moderately sensitive, MT = moderately tolerant, T = tolerant)

Сгор			Salt Tolerar	Salt Tolerance Parameters		
Common name	Botanical name [‡]	Tolerance based on	Threshold [§] (EC _e)	Slope	Rating [¶]	References
			dS/m	% per dS/m		
Almond	Prunus duclis (Mill.) D.A. Webb	Shoot growth	1.5	19	S	Bernstein et al., 1956; Brown et al., 1953
Apple	Malus sylvestris Mill.		-	-	S	Ivanov, 1970
Apricot	Prunus armeniaca L.	Shoot growth	1.6	24	S	Bernstein et al., 1956
Avocado	Persea americana Mill.	Shoot growth	-	-	S	Ayars, 1950a; Haas, 1950
Banana	Musa acuminata Colla	Fruit yield	-	-	S	Israeli et al., 1986
Blackberry	Rubus macropetalus Doug. ex Hook	Fruit yield	1.5	22	S	Ehlig, 1964
Boysenberry	Rubus ursinus Cham. and Schlechtend	Fruit yield	1.5	22	S	Ehlig, 1964
Castor seed	Ricinus communis L.		-	-	MS*	USSL Staff, 1954
Cherimoya	Annona cherimola Mill.	Foliar injury	-	-	S	Cooper, Cowley & Shull, 1952
Cherry, sweet	Prunus avium L.	Foliar injury	-	-	S*	Beeftink, 1955
Cherry, sand	Prunus besseyi L., H. Baley	Foliar injury, stem growth	-	-	S*	Zhemchuzhnikov, 1946
	Cocos nucifera L.		-	-	MT*	Kulkarni et al., 1973
IC	· · · ·	- · · · · · · · · · · · · · · · · · · ·	r – – – – – – – – – – – – – – – – – – –			I

Herbaceous crops

	Сгор		Salt Tolerance Parameters			
Common name	Botanical name [‡]	Tolerance based on	Threshold [§] (EC _e)	Slope	Rating	References
	Dotanical hame		dS/m	% per dS/m	ixaung-	Kelefences
		Fibre, grain and	l special crops			
Artichoke, Jerusalem	Helianthus tuberosus L.	Tuber yield	0.4	9.6	MS	Newton et al., 1991
Barley [#]	Hordeum vulgare L.	Grain yield	8.0	5.0	Т	Ayars et al., 1952; Hassan et al., 1970a
Canola or rapeseed	Brassica campestris L. [syn. B. rapa L.]	Seed yield	9.7	14	Т	Francois, 1994a
Canola or rapeseed	B. napus L.	Seed yield	11.0	13	Т	Francois, 1994a
Chickpea	Cicer arietinum L.	Seed yield	-	-	MS	Manchanda & Sharma, 1989; Ram <i>et al</i> ., 1989
Corn ^{‡‡}	Zea mays L.	Ear FW	1.7	12	MS	Bernstein & Ayars, 1949b; Kaddah & Ghowail, 1964
Cotton	Gossypium hirsutum L.	Seed cotton yield	7.7	5.2	Т	Bernstein, 1955, 1956; Bernstein & Ford, 1959a

Vegetable and fruit crops

Artichoke	Cynara scolymus L.	Bud yield	6.1	11.5	MT	Francois, 1995
Asparagus	Asparagus officinalis L.	Spear yield	4.1	2.0	Т	Francois, 1987
Bean, common	Phaseolus vulgaris L.	Seed yield	1.0	19	S	Bernstein & Ayars, 1951; Hoffman & Rawlins, 1970; Magistad <i>et al.</i> , 1943; Nieman & Bernstein, 1959; Osawa, 1965
Bean, lima	P. lunatus L.	Seed yield	-	-	MT*	Mahmoud et al., 1988
Bean, mung	Vigna radiata (L.) R. Wilcz.	Seed yield	1.8	20.7	S	Minhas et al., 1990
Cassava	Manihot esculenta Crantz	Tuber yield	-	-	MS	Anonymous, 1976; Hawker & Smith, 1982
Beet, red ^{##}	Beta vulgaris L.	Storage root	4.0	9.0	мт	Bernstein <i>et al.</i> , 1974; Hoffman & Rawlins, 1971; Magistad <i>et al.</i> , 1943
Broccoli	Brassica oleracea L. (Botrytis Group)	Shoot FW	2.8	9.2	MS	Bernstein & Ayars, 1949a; Bernstein <i>et al.</i> , 1974
Brussels sprouts	B oleracea L (Gemmifera		-	-	MS*	

http://www.fao.org/docrep/005/y4263e/y4263e0e.htm

P. Cannavo

> 3.2 Greywater reuse for irrigation

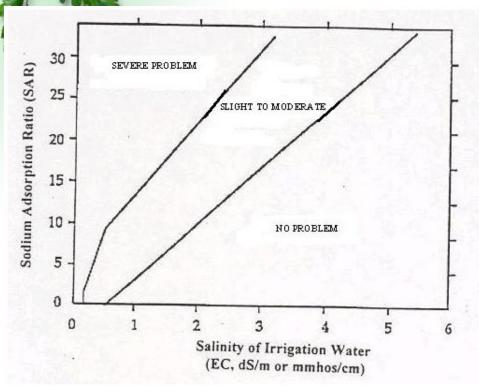
Soil salinization risk

Water irrigation can contain high salt contents, leading to soil and soil water salinity.

Consequences:

For plants:

Osmotic effects: turgescence modification, osmolyte biosinthesis Ion effects: toxicity, mineral and water uptake perturbations Plant physiology: leaf necrosis, chlorophyll production inhibited


 \Rightarrow Sodium Adsorption Ratio (SAR)

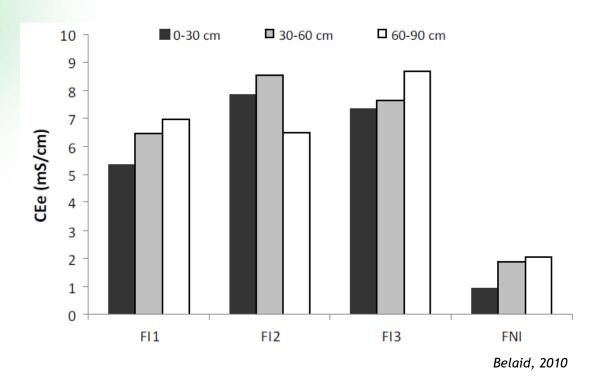
 $SAR = \frac{[Na^+]}{\sqrt{\frac{1}{2}([Ca^{2+}] + [Mg^{2+}])}}$ concentrations in cmol+/l

Recommendation of SAR < 20 for water irrigation, without salinity risk

3.2 Greywater reuse for irrigation

Soil salinization risk: relations between SAR and EC

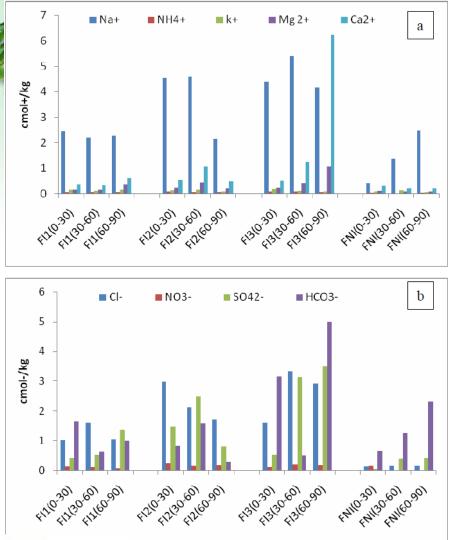
Potential for reduction in infiltration rates resulting from various combinations of EC and SAR of applied water (After Hanson et al., 1999)


	EC dS/m	EC dS/m	EC dS/m
SAR	No Problem	Slight to Moderate	Severe Problem
0 to 3	> 0.9	0.9 to 0.2	< 0.2
3 to 6	> 1.3	1.3 to 0.25	< 0.25
6 to 12	> 2.0	2.0 to 0.35	< 0.35
12 to 20	> 3.1	3.1 to 0.9	< 0.9
20+	> 5.6	5.6 to 1.8	< 1.8

Guidelines for saline-sodic water quality suitable for irrigation (After Ayers and Tanji, 1981)

3.2 Greywater reuse for irrigation

Impact of greywater reuse on soil properties


Impact of 4 years of greywater supply on soil salinity from 0 to 90 cm depth Soil salinity is evaluated by the soil electric conductivity (CE) FI1, FI2, FI3 are 3 repetitions in a same field receiving greywater FNI did not received greywater (=control)

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

P. Cannavo

> 3.2 Greywater reuse for irrigation

Impact of greywater reuse on soil properties

Impact of 4 years of greywater supply on soil nutrient content from 0 to 90 cm depth

FI1, FI2, FI3 are 3 repetitions in a same field receiving greywater FNI did not received greywater (=control)

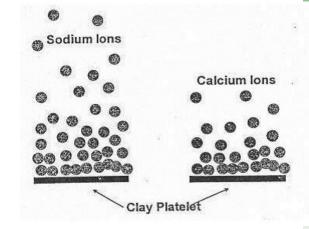
> AGRO CAMPUS

P. Cannavo

Belaid, 2010

> 3.2 Greywater reuse for irrigation

Negative impacts of greywater reuse on soil physical properties


> Sodium and sodicity

Sodium has the opposite effect of salinity on soils.

The primary physical processes associated with high sodium concentrations are <u>soil dispersion</u> and clay platelet and <u>aggregate swelling</u>.

The forces that bind clay particles together are disrupted when too many large sodium ions come between them.

=> When this separation occurs, the clay particles expand, causing swelling and soil dispersion.

Behavior of sodium and calcium attached to clay particles (After Hanson et al., 1999)

Salts that contribute to salinity, such as calcium and magnesium, do not have this effect because they are smaller and tend to cluster closer to clay particles (Figure). Increased amounts of calcium and magnesium can reduce the amount of sodium-induced dispersion.

3.2 Greywater reuse for irrigation

Negative impacts of greywater reuse on soil physical properties

Infiltration

Soil dispersion hardens soil and blocks water infiltration, making it difficult for plants to establish and grow.

⇒ reduced plant available water and increased runoff and soil erosion.

Hydraulic Conductivity

Soil dispersion not only reduces the amount of water entering the soil, but also affects hydraulic conductivity of soil.

When sodium-induced soil dispersion causes loss of soil structure, the **hydraulic** conductivity is also reduced.

- \Rightarrow The upper layer can become swollen and water logged.
- This results in anaerobic soils which can reduce or prevent plant growth and decrease organic matter decomposition rates.
- ⇒ The decrease in decomposition causes soils to become infertile, black alkali soil

P. Cannavo

AGRC

3.2 Greywater reuse for irrigation

Negative impacts of greywater reuse on soil physical properties

Surface Crusting

>> Surface crusting is a characteristic of sodium affected soils. The primary causes of surface crusting are :

 physical dispersion caused by impact of <u>raindrops or irrigation water</u>
 chemical dispersion, which depends on the <u>ratio of salinity and sodicity</u> of the applied water.

>> Surface crusting due to rainfall is greatly enhanced by sodium induced clay dispersion.

>> When clay particles disperse within soil water, they **plug macropores** in surface soil by two means:

 they block avenues for water and roots to move through the soil.
 they form a cement like surface layer when the soil dries. The hardened upper layer, or surface crust, restricts water infiltration and plant emergence.

Thank you for your attention !

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation P

P. Cannavo